Kekalifahan Islam (Empayar Islam) yang diasaskan di Timur Tengah, Afrika Utara, Iberia, dan sesetengah bahagian India (di Pakistan) pada abad ke-8 mengekalkan dan menterjemahkan banyak teks matematik keyunanian (daripada bahasa Greek kepada bahasa Arab) yang kebanyakannya telah dilupai di Eropah pada masa itu. Penterjemahan berbagai-bagai teks matematik India dalam bahasa Arab memberikan kesan yang utama kepada matematik Islam, termasuk pengenalan angka Hindu-Arab ketika karya-karya Brahmagupta diterjemahkan dalam bahasa Arab pada kira-kira tahun 766. Karya-karya India dan keyunanian menyediakan asas untuk penyumbangan Islam yang penting dalam bidang matematik yang menyusul. Serupa dengan ahli-ahli matematik India pada waktu itu, ahli-ahli Islam minat akan astronomi khususnya.
Walaupun kebanyakan teks matematik Islam ditulis dalam bahasa Arab, bukan semuanya ditulis oleh orang Arab kerana, serupa dengan status bahasa Greek di dunia keyunanian, bahasa Arab dipergunakan sebagai bahasa tertulis oleh cendekiawan-cendekiawan bukan Arab di seluruh dunia Islam pada waktu itu. Sesetengah ahli matematik yang terpenting adalah orang Parsi.
Muhammad ibn Musa al-Khwarizmi, ahli astronomi Parsi abad ke-9 dari Kekalifahan Baghdad, menulis banyak buku yang penting mengenai angka Hindu-Arab dan kaedah untuk menyelesaikan persamaan. Perkataan algoritma berasal daripada namanya, manakala perkataan algebra berasal daripada judul Al-Jabr wa-al-Muqabilah, salah satu karyanya. Al-Khwarizmi sering dianggap sebagai bapa algebra moden dan algoritma moden.
Perkembangan algebra yang lebih lanjut telah dibuat oleh Abu Bakr al-Karaji (953—1029) dalam karyanya, al-Fakhri, yang memperluas kaedah algebra untuk merangkumi kuasa kamiran serta punca kuasa bagi kuantiti yang tidak diketahui. Pada abad ke-10, Abul Wafa menterjemahkan karya-karya Diophantus dalam bahasa Arab dan mengembangkan fungsi tangen.
Omar Khayyam, pemuisi serta ahli matematik abad ke-12, menulis Perbincangan mengenai Kesukaran dalam Euclid, sebuah buku mengenai kecacatan dalam karya Unsur-unsur Euclid. Beliau memberi penyelesaian geometri untuk persamaan kuasa tiga yang merupakan salah satu perkembangan yang paling asli dalam matematik Islam. Khayyam amat terpengaruh dalam pembaharuan takwim. Sebahagian besar trigonometri sfera dikembangkan oleh Nasir al-Din Tusi (Nasireddin), salah seorang ahli matematik Parsi pada abad ke-13. Beliau juga menulis sebuah karya yang terpengaruh mengenai postulat selari Euclid.
Dalam abad ke-15, Ghiyath al-Kashi mengira nilai π sehingga tempat perpuluhan ke-16. Kashi juga mencipta algoritma untuk mengira punca kuasa ke-n yang merupakan kes yang khas untuk kaedah-kaedah yang diberikan berabad-abad kemudian oleh Ruffini dan Horner. Ahli-ahli matematik Islam lain yang terkenal termasuk al-Samawal, Abu'l-Hasan al-Uqlidisi, Jamshid al-Kashi, Thabit ibn Qurra, Abu Kamil dan Abu Sahl al-Kuhi.
Pada zaman Kerajaan Turki Uthmaniyah dalam abad ke 15, perkembangan matematik Islam menjadi lembap. Ini adalah selari dengan kelembapan perkembangan matematik ketika orang Rom menaklukkan dunia keyunanian.
Di Eropah pada bermulanya Zaman Pembaharuan Eropah, kebanyakan yang kini dipanggil matematik sekolah — kira-kira campur, kira-kira tolak, pendaraban, pembahagian, dan geometri — dikenali oleh orang-orang yang berpendidikan, walaupun notasi mereka adalah besar dan memakan ruang: angka-angka rumi serta perkataan-perkataan digunakan, bukannya simbol: tidak adanya tanda plus, tanda persamaan, serta penggunaan x sebagai simbol untuk kuantiti yang tak diketahui. Kebanyakan matematik yang kini diajar di universiti diketahui hanya oleh komuniti matematik di India atau masih belum diselidik dan dikembangkan di Eropah.
Melalui penterjemahan teks Arab dalam bahasa Latin, pengetahuan tentang angka Hindu-Arab serta perkembangan penting Islam dan India yang lain dibawa ke Eropah. Terjemahan karya Al-Khwarizmi, Al-Jabr wa-al-Muqabilah, oleh Robert of Chester dalam bahasa Latin pada abad ke-12 adalah mustahak khususnya. Karya-karya terawal Aristotle dikembangkan semula di Eropah, mula-mulanya dalam bahasa Arab dan kemudian dalam bahasa Greek. Yang amat penting ialah penemuan semula Organon, himpunan tulisan logik Aristotle yang disusun pada abad ke-1.
Keinginan yang dibangkitkan semula tentang perolehan pengetahuan baru mencetuskan pembaharuan minat terhadap matematik. Pada awal abad ke-13, Fibonacci menghasilkan matematik penting yang pertama di Eropah sejak masa Eratosthenes, satu lompang yang melebihi seribu tahun. Tetapi sejauh yang kini diketahui, hanya sejak akhir abad ke-16 bahawa ahli-ahli matematik mula membuat kemajuan tanpa sebarang prajadian di mana-mana tempat di dunia.
Yang pertama daripada ini ialah penyelesaian am bagi persamaan kuasa tiga yang secara umumnya dikatakan dicipta oleh Scipione del Ferro pada kira-kira tahun 1510, tetapi diterbitkan buat pertama kali oleh Gerolamo Cardano dalam karyanya, Ars magna. Ini diikuti dengan cepat oleh penyelesaian persamaan kuartik am oleh Lodovico Ferrari
Sejak masa itu, perkembangan-perkembangan matematik muncul dengan pantas dan bergabung dengan kemajuan dalam bidang sains untuk menghasilkan faedah bersama. Pada tahun 1543 yang penting, Copernicus menerbitkan karyanya, De revolutionibus, yang menegaskan bahawa Bumi mengelilingi Matahari, dan Vesalius menerbitkan De humani corporis fabrica yang mengolahkan tubuh manusia sebagai suatu himpunan organ.
Didorong oleh desakan pelayaran serta keperluan yang semakin bertambah untuk peta-peta kawasan besar yang tepat, trigonometri bertumbuh menjadi satu cabang matematik yang utama. Bartholomaeus Pitiscus merupakan orang pertama yang menggunakan perkataan ini ketika beliau menerbitkan karyanya, Trigonometria, pada tahun 1595. Jadual sinus dan kosinus Regiomontanus diterbitkan pada tahun 1533. [9]
Disebabkan oleh Regiomontanus (1436—1476) dan François Vieta (1540—1603), antara lain, pada akhir abad, matematik ditulis menggunakan angka Hindu-Arab dalam bentuk yang tidak amat berbeza dengan notasi-notasi yang anggun yang kini digunakan.
Selain daripada penggunaan matematik untuk mengkaji langit, matematik gunaan mula berkembang ke bidang-bidang yang baru, dengan surat-menyurat antara Pierre de Fermat dengan Blaise Pascal. Pascal dan Fermat menyediakan persediaan asas untuk penyelidikan teori kebarangkalian dan hukum-hukum kombinatorik yang sepadan dalam perbincangan-perbincangan mereka tentang permainan pertaruhan. Pascal, dengan pertaruhan, mencuba menggunakan teori kebarangkalian yang baru dikembangkan ini untuk memperdebatkan pengabdian hidup pada agama, berdasarkan alasan bahawa walaupun jika kebarangkalian kejayaan adalah kecil, ganjarannya tidak terbatas. Dari satu segi, ini membayangkan perkembangan yang kemudian terhadap teori utiliti pada abad ke-18 dan ke-19.
Di Eropah pada bermulanya Zaman Pembaharuan Eropah, kebanyakan yang kini dipanggil matematik sekolah — kira-kira campur, kira-kira tolak, pendaraban, pembahagian, dan geometri — dikenali oleh orang-orang yang berpendidikan, walaupun notasi mereka adalah besar dan memakan ruang: angka-angka rumi serta perkataan-perkataan digunakan, bukannya simbol: tidak adanya tanda plus, tanda persamaan, serta penggunaan x sebagai simbol untuk kuantiti yang tak diketahui. Kebanyakan matematik yang kini diajar di universiti diketahui hanya oleh komuniti matematik di India atau masih belum diselidik dan dikembangkan di Eropah.
Melalui penterjemahan teks Arab dalam bahasa Latin, pengetahuan tentang angka Hindu-Arab serta perkembangan penting Islam dan India yang lain dibawa ke Eropah. Terjemahan karya Al-Khwarizmi, Al-Jabr wa-al-Muqabilah, oleh Robert of Chester dalam bahasa Latin pada abad ke-12 adalah mustahak khususnya. Karya-karya terawal Aristotle dikembangkan semula di Eropah, mula-mulanya dalam bahasa Arab dan kemudian dalam bahasa Greek. Yang amat penting ialah penemuan semula Organon, himpunan tulisan logik Aristotle yang disusun pada abad ke-1.
Keinginan yang dibangkitkan semula tentang perolehan pengetahuan baru mencetuskan pembaharuan minat terhadap matematik. Pada awal abad ke-13, Fibonacci menghasilkan matematik penting yang pertama di Eropah sejak masa Eratosthenes, satu lompang yang melebihi seribu tahun. Tetapi sejauh yang kini diketahui, hanya sejak akhir abad ke-16 bahawa ahli-ahli matematik mula membuat kemajuan tanpa sebarang prajadian di mana-mana tempat di dunia.
Yang pertama daripada ini ialah penyelesaian am bagi persamaan kuasa tiga yang secara umumnya dikatakan dicipta oleh Scipione del Ferro pada kira-kira tahun 1510, tetapi diterbitkan buat pertama kali oleh Gerolamo Cardano dalam karyanya, Ars magna. Ini diikuti dengan cepat oleh penyelesaian persamaan kuartik am oleh Lodovico Ferrari
Sejak masa itu, perkembangan-perkembangan matematik muncul dengan pantas dan bergabung dengan kemajuan dalam bidang sains untuk menghasilkan faedah bersama. Pada tahun 1543 yang penting, Copernicus menerbitkan karyanya, De revolutionibus, yang menegaskan bahawa Bumi mengelilingi Matahari, dan Vesalius menerbitkan De humani corporis fabrica yang mengolahkan tubuh manusia sebagai suatu himpunan organ.
Didorong oleh desakan pelayaran serta keperluan yang semakin bertambah untuk peta-peta kawasan besar yang tepat, trigonometri bertumbuh menjadi satu cabang matematik yang utama. Bartholomaeus Pitiscus merupakan orang pertama yang menggunakan perkataan ini ketika beliau menerbitkan karyanya, Trigonometria, pada tahun 1595. Jadual sinus dan kosinus Regiomontanus diterbitkan pada tahun 1533. [9]
Disebabkan oleh Regiomontanus (1436—1476) dan François Vieta (1540—1603), antara lain, pada akhir abad, matematik ditulis menggunakan angka Hindu-Arab dalam bentuk yang tidak amat berbeza dengan notasi-notasi yang anggun yang kini digunakan.
[sunting] Abad ke-17
Abad ke-17 memperlihatkan ledakan yang tidak pernah berlaku dahulu tentang idea-idea matematik dan sains di seluruh Eropah. Galileo Galilei, seorang Itali, mencerap bulan-bulan yang mengelilingi Musytari dengan menggunakan sebuah teleskop yang berdasarkan mainan yang diimport dari Holland. Tycho Brahe, seorang Denmark, mengumpulkan sejumlah data matematik yang amat besar untuk memerihalkan kedudukan-kedudukan planet di langit. Muridnya, Johannes Kepler, seorang Jerman, memulakan kerjanya dengan data ini. Disebabkan sebahagian oleh keinginannya untuk membantu Kepler dalam penghitungan, Lord Napier di Scotland merupakan orang pertama untuk menyelidik logaritma tabii. Kepler berjaya dalam perumusan hukum-hukum matematik mengenai gerakan planet. Geometri analisis yang dikembangkan oleh Descartes, seorang Perancis, membenarkan orbit-orbit ini diplot pada suatu graf. Dan Isaac Newton, seorang Inggeris, menemui hukum-hukum fizik yang menerangkan orbit-orbit planet serta juga matematik kalkulus yang dapat digunakan untuk menyimpulkan hukum-hukum Kepler daripada prinsip kegravitaan semesta Newton. Secara berasingan, Gottfried Wilhelm Leibniz di negara Jerman mengembangkan kalkulus dan banyak notasi kalkulus yang masih digunakan pada hari ini. Sains dan matematik telah menjadi sebuah usaha antarabangsa yang kemudian tersebar ke seluruh dunia.Selain daripada penggunaan matematik untuk mengkaji langit, matematik gunaan mula berkembang ke bidang-bidang yang baru, dengan surat-menyurat antara Pierre de Fermat dengan Blaise Pascal. Pascal dan Fermat menyediakan persediaan asas untuk penyelidikan teori kebarangkalian dan hukum-hukum kombinatorik yang sepadan dalam perbincangan-perbincangan mereka tentang permainan pertaruhan. Pascal, dengan pertaruhan, mencuba menggunakan teori kebarangkalian yang baru dikembangkan ini untuk memperdebatkan pengabdian hidup pada agama, berdasarkan alasan bahawa walaupun jika kebarangkalian kejayaan adalah kecil, ganjarannya tidak terbatas. Dari satu segi, ini membayangkan perkembangan yang kemudian terhadap teori utiliti pada abad ke-18 dan ke-19.